Khaled Daqrouq, Ibrahim Abu Sbeih, Omer Daoud, Emad Khalaf, An investigation of speech enhancement using wavelet filtering method, International Journal of Speech Technology (Springer), 2010, Volume 13, Number 2, Pages 101-1152010
نویسندگان
چکیده
This paper investigates the utilization of wavelet filters via multistage convolution by Reverse Biorthogonal Wavelets (RBW) in high and low pass band frequency parts of speech signal. Speech signal is decomposed into two pass bands of frequency; high and low, and then the noise is removed in each band individually in different stages via wavelet filters. This approach provides better outcomes because it does not cut the speech information, which occurs when utilizing conventional thresholding. We tested the proposed method via several noise probability distribution functions. Subjective evaluation is engaged in conjunction with objective evaluation to accomplish optimal investigation method. The method is simple but has surprise high quality results. The method shows superiority over Donoho and Johnstone thresholding method and Birge-Massart thresholding strategy method
منابع مشابه
An investigation of speech enhancement using wavelet filtering method, International Journal of Speech Technology
This paper investigates the utilization of wavelet filters via multistage convolution by Reverse Biorthogonal Wavelets (RBW) in high and low pass band frequency parts of speech signal. Speech signal is decomposed into two pass bands of frequency; high and low, and then the noise is removed in each band individually in different stages via wavelet filters. This approach provides better outcomes ...
متن کاملVowels Recognition by Modular Arithmetic and Wavelets using Neural Network
Recently, the speech recognition is very attractive for researchers because of the very significant related applications. For this reason, the novel research has been of very importance in the academic community. The aim of this work is to find out a new and appropriate feature extraction method for Arabic language recognition. In the present study, wavelet packet transform (WPT) with modular a...
متن کاملWavelet Formants Speaker Identification Based System via Neural Network
In this paper Discrete wavelet Transform with logarithmic Power Spectrum Density (PSD) are combined for speaker formants extraction, to be used as evident classification features. For classification, Feed Forward Back Propagation Neural Network FFBNN method is proposed. The Discrete Wavelet formants Neural Network DWFNNT system works with excellent capability of features tracking even with 0dB ...
متن کاملA New Method for Speech Enhancement Based on Incoherent Model Learning in Wavelet Transform Domain
Quality of speech signal significantly reduces in the presence of environmental noise signals and leads to the imperfect performance of hearing aid devices, automatic speech recognition systems, and mobile phones. In this paper, the single channel speech enhancement of the corrupted signals by the additive noise signals is considered. A dictionary-based algorithm is proposed to train the speech...
متن کاملSpeech Emotion Recognition Using Scalogram Based Deep Structure
Speech Emotion Recognition (SER) is an important part of speech-based Human-Computer Interface (HCI) applications. Previous SER methods rely on the extraction of features and training an appropriate classifier. However, most of those features can be affected by emotionally irrelevant factors such as gender, speaking styles and environment. Here, an SER method has been proposed based on a concat...
متن کامل